ee364m Exercise Set 1

Due date: January 17, 11:59pm

Question 1.1: A complete normed vector space V (that is, a Banach space) with norm $\|\cdot\|$ is uniformly convex if for all all $0<\epsilon \leq 2$, there exists a $\delta=\delta(\epsilon)>0$ such that whenever vectors $x, y \in V$ with $\|x\|=\|y\|=1$ satisfy

$$
\|x-y\| \geq \epsilon, \quad \text { then } \quad\left\|\frac{x+y}{2}\right\| \leq 1-\delta .
$$

(a) Let V be a uniformly convex Banach space (so that V is complete) and $C \subset V$ be a closed convex set. Show that

$$
\pi_{C}(x):=\underset{y \in C}{\operatorname{argmin}}\|y-x\|
$$

exists and is unique. Hint. Without loss of generality, you may assume $x=0$ and $0 \notin C$.
(b) Let $\|\cdot\|=\|\cdot\|_{1}$ be the ℓ_{1}-norm. Show that \mathbb{R}^{n} with this norm is not uniformly convex by giving a convex set C and point x for which $\pi_{C}(x)$ is not unique. Draw a picture.
(c) Let $\|\cdot\|=\|\cdot\|_{\infty}$ be the ℓ_{∞}-norm. Show that \mathbb{R}^{n} with this norm is not uniformly convex by giving a convex set C and point x for which $\pi_{C}(x)$ is not unique. Draw a picture.

