ee364m Exercise Set 1

Due date: January 17, 11:59pm

Question 1.1: A complete normed vector space V (that is, a Banach space) with norm $\|\cdot\|$ is *uniformly convex* if for all all $0 < \epsilon \leq 2$, there exists a $\delta = \delta(\epsilon) > 0$ such that whenever vectors $x, y \in V$ with $\|x\| = \|y\| = 1$ satisfy

$$||x - y|| \ge \epsilon$$
, then $\left|\left|\frac{x + y}{2}\right|\right| \le 1 - \delta$.

(a) Let V be a uniformly convex Banach space (so that V is complete) and $C \subset V$ be a closed convex set. Show that

$$\pi_C(x) := \operatorname*{argmin}_{y \in C} \|y - x\|$$

exists and is unique. *Hint*. Without loss of generality, you may assume x = 0 and $0 \notin C$.

- (b) Let $\|\cdot\| = \|\cdot\|_1$ be the ℓ_1 -norm. Show that \mathbb{R}^n with this norm is not uniformly convex by giving a convex set C and point x for which $\pi_C(x)$ is not unique. Draw a picture.
- (c) Let $\|\cdot\| = \|\cdot\|_{\infty}$ be the ℓ_{∞} -norm. Show that \mathbb{R}^n with this norm is not uniformly convex by giving a convex set C and point x for which $\pi_C(x)$ is not unique. Draw a picture.