EE364M EXERCISE SET 10

Due date: March 20, 11:59pm

In this exercise set, we will explore a few consequences of the model-based minimization methods we have developed. This problem set is *completely optional*, but it provides (what I think) are some interesting additional developments to the lecture's contents, including showing how we relate stationarity to gradient mappings, even in problems beyond convexity.

Question 10.1 (Models in convex optimization): Consider the minimization problem

minimize
$$f(x) := h(x) + r(x)$$

subject to $x \in \Omega$ (10.1)

where $\Omega \subset \mathbb{R}^n$, h has L-Lipschitz gradient on Ω , and r is convex.

(a) Show that the *prox-linear* model

$$f_x(y) := h(x) + \langle \nabla h(x), y - x \rangle + r(x)$$

is quadratically accurate for f, that is, $|f_x(y) - f(y)| \le \frac{L}{2} ||x - y||_2^2$, and $f_x(y) \le f(y)$ for all y.

(b) Let $x^* \in \Omega$ solve problem (10.1). Show that for an appropriate stepsize $\alpha > 0$, the iteration

$$x_{k+1} := \operatorname*{argmin}_{x \in \Omega} \left\{ f_{x_k}(x) + \frac{1}{2\alpha} \|x - x_k\|_2^2 \right\}$$

satisfies

$$f(x_{k+1}) - f(x^*) \le \frac{L \|x_1 - x^*\|_2^2}{2k}$$

- (c) Show how to solve the one-step update in part (b) for $r(x) = \lambda ||x||_1$, where $\Omega \in \mathbb{R}^n$. (This method is called *iterative shrinkage and thresholding*, or *ISTA*.)
- (d) Let Ω be the collection of positive semidefinite matrices, and for $X \in \Omega$ let $r(X) = \lambda \operatorname{tr} X$ be the trace of X. Show how to solve the one-step update in part (b).

Question 10.2 (A variational principle): Ekeland's variational principle relates near optimality of points to being (nearly) stationary in ways that Question 10.3 explores.

Theorem 10.2.1 (Ekeland [2]). Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{\infty\}$ be proper (so that $\inf_x f(x) > -\infty$) and closed, and let x_0 satisfy $f(x_0) - \inf_x f(x) \le \epsilon$ for some $0 \le \epsilon < \infty$. Then for any $\delta > 0$ there exists a point \hat{x} satisfying

- i. $\|\widehat{x} x_0\|_2 \leq \frac{\epsilon}{\delta}$
- *ii.* $f(\hat{x}) \leq f(x_0)$
- iii. \hat{x} uniquely minimizes $f(x) + \delta \|x \hat{x}\|_2$ over $x \in \mathbb{R}^n$.
- (a) Define the sublevel-like set

$$S := \{ x \in \mathbb{R}^n \mid f(x) + \delta \| x - x_0 \|_2 \le f(x_0) \}.$$

Argue that S is non-empty and compact and hence a minimizer of $\hat{x} \in S$ of f on S exists.

(b) Show that

$$\|\widehat{x} - x_0\|_2 \le \frac{\epsilon}{\delta}$$
 and $f(\widehat{x}) \le f(x_0)$.

(c) Finalize the proof of the theorem to demonstrate that \hat{x} as above satisfies its conclusions.

(d) Give an interpretation of Theorem 10.2.1. (There is no uniquely correct answer for this.)

For the final problem, we require a few new definitions. A function $f : \mathbb{R}^n \to \mathbb{R}$ is λ -weakly convex if for some $x_0 \in \mathbb{R}^n$, the function

$$f(x) + \frac{\lambda}{2} \|x - x_0\|_2^2$$

is convex in x. (Convince yourself that the choice of x_0 is immaterial here.) The Fréchet subdifferential $\partial^F f(x)$ of such a function consists of those vectors g for which

$$f(y) \ge f(x) + \langle g, y - x \rangle - O(\|y - x\|^2)$$

as $y \to x$, which is equivalent in the λ -weakly convex case (this is not completely trivial) to the set of vectors

$$g \in \partial_z \left\{ f(z) + \frac{\lambda}{2} \left\| z - x \right\|_2^2 \right\} \Big|_{z=x},$$

that is, the regular subgradient of the convex function $z \mapsto f(z) + \frac{\lambda}{2} ||z - x||_2^2$ evaluated at z = x. Note that in this case, if the function f in Ekeland's variational principle (Theorem 10.2.1) is weakly convex, then the final part becomes equivalent to the claim that

$$0 \in \partial^{\mathrm{F}} f(\widehat{x}) + \delta \mathbb{B}_2^n$$

Question 10.3 (Gradient mappings and weakly convex minimization):

- (a) Give an example of a convex function $f : \mathbb{R} \to \mathbb{R}$ for which $|f'(x)| \ge 1$ except when $x = \operatorname{argmin}_x f(x)$, so that even in the convex case, we would not (generally) expect algorithms to find points with small subgradients.
- (b) Let f(x) = h(c(x)), where h is convex and L_h -Lipschitz and c has L_c -Lipschitz derivative. Show that f is L_cL_h -weakly convex, and even more, that

$$\partial^{\mathrm{F}} f(x) \supset \nabla c(x) \partial h(c(x)).$$

Hint. It is enough to show that $f + \frac{M}{2} \|\cdot\|_2^2$ is subdifferentiable.

(c) Recall that for a model f_x of f at the point x, we define the gradient mapping G_{α} via

$$x_{\alpha} = \operatorname*{argmin}_{x \in X} \left\{ f_{x_0}(x) + \frac{1}{2\alpha} \|x - x_0\|_2^2 \right\} \text{ and } \mathsf{G}_{\alpha}(x_0) := \frac{1}{\alpha} (x_0 - x_{\alpha}).$$

Let f_x be convex and quadratically accurate, so that $|f_x(y) - f(y)| \leq \frac{M}{2} ||x - y||_2^2$ for all y. Use Ekeland's variational principle (Theorem 10.2.1) show that for any x_0 and $\alpha > 0$, there exists \hat{x} satisfying

i. Point proximity: $\|\widehat{x} - x_{\alpha}\|_{2} \leq \alpha \|\mathsf{G}_{\alpha}(x_{0})\|_{2}$.

- ii. Value proximity: $f(\hat{x}) \leq f(x_{\alpha}) + \frac{M\alpha^2 + \alpha}{2} \|\mathsf{G}_{\alpha}(x_0)\|_2^2$.
- iii. Near stationarity: dist $(0, \partial^{\mathsf{F}} f(\hat{x})) \leq (2M\alpha + 1) \|\mathsf{G}_{\alpha}(x_0)\|_2$.

In short, once the gradient mapping $G_{\alpha}(x_0)$ is small, there is a point \hat{x} near the updated point x_{α} that is nearly stationary for f.

Hint. Following Drusvyatskiy and Lewis [1], define the function $\varphi(y) := f(y) + \frac{M+\alpha^{-1}}{2} ||y-x_0||_2^2$. Argue that $\varphi(x_\alpha) - \varphi^* \leq M ||x_\alpha - x_0||_2^2$, where $\varphi^* = \inf_y \varphi(y)$. Then apply Ekeland's variational principle with $\epsilon = M\alpha ||\mathbf{G}_\alpha(x_0)||_2^2$, and observe that the \hat{x} it guarantees satisfies $0 \in \partial^{\mathsf{F}}\varphi(\hat{x}) + \delta\mathbb{B}_2^n$, where $\partial^{\mathsf{F}}\varphi(x) = \partial^{\mathsf{F}}f(x) + \frac{M+\alpha^{-1}}{2}(x-x_0)$.

References

- D. Drusvyatskiy and A. Lewis. Error bounds, quadratic growth, and linear convergence of proximal methods. *Mathematics of Operations Research*, 43(3):919–948, 2018.
- [2] I. Ekeland. On the variational principle. Journal of Mathematical Analysis and Applications, 47(2):324–353, 1974.