
ee364m Exercise Set 10

Due date: March 20, 11:59pm

In this exercise set, we will explore a few consequences of the model-based minimization methods
we have developed. This problem set is completely optional, but it provides (what I think) are some
interesting additional developments to the lecture’s contents, including showing how we relate
stationarity to gradient mappings, even in problems beyond convexity.
Question 10.1 (Models in convex optimization): Consider the minimization problem

minimize f(x) := h(x) + r(x)
subject to x ∈ Ω

(10.1)

where Ω ⊂ Rn, h has L-Lipschitz gradient on Ω, and r is convex.

(a) Show that the prox-linear model

fx(y) := h(x) + 〈∇h(x), y − x〉+ r(x)

is quadratically accurate for f , that is, |fx(y)− f(y)| ≤ L
2 ‖x− y‖

2
2, and fx(y) ≤ f(y) for all y.

(b) Let x? ∈ Ω solve problem (10.1). Show that for an appropriate stepsize α > 0, the iteration

xk+1 := argmin
x∈Ω

{
fxk(x) +

1

2α
‖x− xk‖22

}
satisfies

f(xk+1)− f(x?) ≤
L ‖x1 − x?‖22

2k
.

(c) Show how to solve the one-step update in part (b) for r(x) = λ ‖x‖1, where Ω ∈ Rn. (This
method is called iterative shrinkage and thresholding, or ISTA.)

(d) Let Ω be the the collection of positive semidefinite matrices, and for X ∈ Ω let r(X) = λ trX
be the trace of X. Show how to solve the one-step update in part (b).

Question 10.2 (A variational principle): Ekeland’s variational principle relates near optimality
of points to being (nearly) stationary in ways that Question 10.3 explores.

Theorem 10.2.1 (Ekeland [2]). Let f : Rn → R ∪ {∞} be proper (so that infx f(x) > −∞) and
closed, and let x0 satisfy f(x0) − infx f(x) ≤ ε for some 0 ≤ ε < ∞. Then for any δ > 0 there
exists a point x̂ satisfying

i. ‖x̂− x0‖2 ≤ ε
δ

ii. f(x̂) ≤ f(x0)

iii. x̂ uniquely minimizes f(x) + δ ‖x− x̂‖2 over x ∈ Rn.

(a) Define the sublevel-like set

S := {x ∈ Rn | f(x) + δ‖x− x0‖2 ≤ f(x0)} .

Argue that S is non-empty and compact and hence a minimizer of x̂ ∈ S of f on S exists.
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(b) Show that

‖x̂− x0‖2 ≤
ε

δ
and f(x̂) ≤ f(x0).

(c) Finalize the proof of the theorem to demonstrate that x̂ as above satisfies its conclusions.

(d) Give an interpretation of Theorem 10.2.1. (There is no uniquely correct answer for this.)

For the final problem, we require a few new definitions. A function f : Rn → R is λ-weakly
convex if for some x0 ∈ Rn, the function

f(x) +
λ

2
‖x− x0‖22

is convex in x. (Convince yourself that the choice of x0 is immaterial here.) The Fréchet subdiffer-
ential ∂ff(x) of such a function consists of those vectors g for which

f(y) ≥ f(x) + 〈g, y − x〉 −O(‖y − x‖2)

as y → x, which is equivalent in the λ-weakly convex case (this is not completely trivial) to the set
of vectors

g ∈ ∂z
{
f(z) +

λ

2
‖z − x‖22

}∣∣∣∣
z=x

,

that is, the regular subgradient of the convex function z 7→ f(z) + λ
2 ‖z − x‖

2
2 evaluated at z = x.

Note that in this case, if the function f in Ekeland’s variational principle (Theorem 10.2.1) is weakly
convex, then the final part becomes equivalent to the claim that

0 ∈ ∂ff(x̂) + δBn2 .

Question 10.3 (Gradient mappings and weakly convex minimization):

(a) Give an example of a convex function f : R → R for which |f ′(x)| ≥ 1 except when x =
argminx f(x), so that even in the convex case, we would not (generally) expect algorithms to
find points with small subgradients.

(b) Let f(x) = h(c(x)), where h is convex and Lh-Lipschitz and c has Lc-Lipschitz derivative.
Show that f is LcLh-weakly convex, and even more, that

∂ff(x) ⊃ ∇c(x)∂h(c(x)).

Hint. It is enough to show that f + M
2 ‖·‖

2
2 is subdifferentiable.

(c) Recall that for a model fx of f at the point x, we define the gradient mapping Gα via

xα = argmin
x∈X

{
fx0(x) +

1

2α
‖x− x0‖22

}
and Gα(x0) :=

1

α
(x0 − xα).

Let fx be convex and quadratically accurate, so that |fx(y)−f(y)| ≤ M
2 ‖x− y‖

2
2 for all y. Use

Ekeland’s variational principle (Theorem 10.2.1) show that for any x0 and α > 0, there exists
x̂ satisfying

i. Point proximity: ‖x̂− xα‖2 ≤ α ‖Gα(x0)‖2.
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ii. Value proximity: f(x̂) ≤ f(xα) + Mα2+α
2 ‖Gα(x0)‖22.

iii. Near stationarity: dist(0, ∂ff(x̂)) ≤ (2Mα+ 1) ‖Gα(x0)‖2.

In short, once the gradient mapping Gα(x0) is small, there is a point x̂ near the updated point
xα that is nearly stationary for f .

Hint. Following Drusvyatskiy and Lewis [1], define the function ϕ(y) := f(y)+M+α−1

2 ‖y − x0‖22.

Argue that ϕ(xα) − ϕ? ≤ M ‖xα − x0‖22, where ϕ? = infy ϕ(y). Then apply Ekeland’s vari-
ational principle with ε = Mα ‖Gα(x0)‖22, and observe that the x̂ it guarantees satisfies 0 ∈
∂fϕ(x̂) + δBn2 , where ∂fϕ(x) = ∂ff(x) + M+α−1

2 (x− x0).
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