EE364M EXERCISE SET 10

Due date: March 20, 11:59pm

In this exercise set, we will explore a few consequences of the model-based minimization methods
we have developed. This problem set is completely optional, but it provides (what I think) are some
interesting additional developments to the lecture’s contents, including showing how we relate
stationarity to gradient mappings, even in problems beyond convexity.

Question 10.1 (Models in convex optimization):  Consider the minimization problem

minimize  f(z) := h(z) + r(z) (10.1)
subject to x € '
where €2 C R", h has L-Lipschitz gradient on €2, and r is convex.

(a) Show that the proz-linear model
fa(y) = hz) + (Vh(2),y — ) + ()
is quadratically accurate for f, that is, |f.(y) — f(¥)| < L ||z — |3, and f.(y) < f(y) for all y.
(b) Let z* € Q solve problem (10.1). Show that for an appropriate stepsize a > 0, the iteration
: 1 2
Tpt1 1= argmin § fo, () + 2% |z — i[5
z€Q «

satisfies )
Lz — fE*H2
2k '

(c) Show how to solve the one-step update in part (b) for r(z) = A|/z||;, where & € R™. (This
method is called iterative shrinkage and thresholding, or ISTA.)

f(@pga) = f2") <

(d) Let € be the the collection of positive semidefinite matrices, and for X € Q let r(X) = Atr X
be the trace of X. Show how to solve the one-step update in part (b).

Question 10.2 (A variational principle): Ekeland’s variational principle relates near optimality
of points to being (nearly) stationary in ways that Question 10.3 explores.

Theorem 10.2.1 (Ekeland [2]). Let f : R® — RU {oo} be proper (so that inf, f(z) > —o0) and
closed, and let xo satisfy f(xo) — inf, f(x) < € for some 0 < € < oco. Then for any § > 0 there
exists a point T satisfying

i |7 = 2oll2 < §
ii. f(z) < f(xo)
iii. T uniquely minimizes f(x) 4 0 ||x — ||, over x € R™.
(a) Define the sublevel-like set
S={z e R" | f(z) + d|lz — moll2 < f(zo)}-

Argue that S is non-empty and compact and hence a minimizer of Z € S of f on S exists.



(b) Show that

€

5 and f(Z) < f(xo).

12 — 2ol2 <

(c) Finalize the proof of the theorem to demonstrate that T as above satisfies its conclusions.

(d) Give an interpretation of Theorem 10.2.1. (There is no uniquely correct answer for this.)

For the final problem, we require a few new definitions. A function f : R® — R is A-weakly
convez if for some xg € R", the function

A
fz)+ 3 |z — 330”3

is convex in z. (Convince yourself that the choice of z¢ is immaterial here.) The Fréchet subdiffer-
ential 0" f(x) of such a function consists of those vectors g for which

fly) = f(@) +{g.y — x) = O(lly — =||*)

as y — x, which is equivalent in the A-weakly convex case (this is not completely trivial) to the set
of vectors

seo. {16+ 30 al3}

)
zZ=XT

that is, the regular subgradient of the convex function z — f(z) + % |z — |3 evaluated at z = .
Note that in this case, if the function f in Ekeland’s variational principle (Theorem 10.2.1) is weakly
convex, then the final part becomes equivalent to the claim that

0€ 9" f(z)+ oBY.
Question 10.3 (Gradient mappings and weakly convex minimization):

(a) Give an example of a convex function f : R — R for which |f’(z)] > 1 except when z =
argmin,, f(x), so that even in the convex case, we would not (generally) expect algorithms to
find points with small subgradients.

(b) Let f(x) = h(c(x)), where h is convex and Ljp-Lipschitz and ¢ has L.-Lipschitz derivative.
Show that f is L.Lj-weakly convex, and even more, that

" f(z) D Ve(x)Oh(c(z)).
Hint. 1t is enough to show that f + & ||-||3 is subdifferentiable.

(c) Recall that for a model f, of f at the point x, we define the gradient mapping G, via

. 1 1
T, = argmin {fxo(x) + % ||z — ong} and Gu(z0) == — (20 — Ta)-
reX (0% (0%

Let f, be convex and quadratically accurate, so that |f,(y) — f(y)| < & ||z — y||3 for all y. Use
Ekeland’s variational principle (Theorem 10.2.1) show that for any z¢ and a > 0, there exists
T satisfying

i. Point proximity: |2 — z4ll; < a||Ga(0)ll5-



ii. Value proximity: f(Z) < f(zq) + Ma#% | Gal0)]|3-
ili. Near stationarity: dist(0,0" f(Z)) < 2Ma + 1) |G (x0)l5-

In short, once the gradient mapping G, (zp) is small, there is a point Z near the updated point
Zo that is nearly stationary for f.

Hint. Following Drusvyatskiy and Lewis [1], define the function ¢(y) := f(y)+ M+2a71 ly — zoll3-

Argue that ¢(zq) — ¢* < M ||zq — a:oﬂg, where ¢* = infy p(y). Then apply Ekeland’s vari-
ational principle with € = Ma ||G4(z0)|5, and observe that the 7 it guarantees satisfies 0 €
0" p(Z) + 0By, where 0" p(z) = 0" f(x) + M“LTO‘_I(:L‘ — Ip).
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