Ee364m Exercise Set 10

Due date: March 20, 11:59pm

In this exercise set, we will explore a few consequences of the model-based minimization methods we have developed. This problem set is completely optional, but it provides (what I think) are some interesting additional developments to the lecture's contents, including showing how we relate stationarity to gradient mappings, even in problems beyond convexity.
Question 10.1 (Models in convex optimization): Consider the minimization problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x):=h(x)+r(x) \tag{10.1}\\
\text { subject to } & x \in \Omega
\end{array}
$$

where $\Omega \subset \mathbb{R}^{n}, h$ has L-Lipschitz gradient on Ω, and r is convex.
(a) Show that the prox-linear model

$$
f_{x}(y):=h(x)+\langle\nabla h(x), y-x\rangle+r(x)
$$

is quadratically accurate for f, that is, $\left|f_{x}(y)-f(y)\right| \leq \frac{L}{2}\|x-y\|_{2}^{2}$, and $f_{x}(y) \leq f(y)$ for all y.
(b) Let $x^{\star} \in \Omega$ solve problem (10.1). Show that for an appropriate stepsize $\alpha>0$, the iteration

$$
x_{k+1}:=\underset{x \in \Omega}{\operatorname{argmin}}\left\{f_{x_{k}}(x)+\frac{1}{2 \alpha}\left\|x-x_{k}\right\|_{2}^{2}\right\}
$$

satisfies

$$
f\left(x_{k+1}\right)-f\left(x^{\star}\right) \leq \frac{L\left\|x_{1}-x^{\star}\right\|_{2}^{2}}{2 k} .
$$

(c) Show how to solve the one-step update in part (b) for $r(x)=\lambda\|x\|_{1}$, where $\Omega \in \mathbb{R}^{n}$. (This method is called iterative shrinkage and thresholding, or ISTA.)
(d) Let Ω be the the collection of positive semidefinite matrices, and for $X \in \Omega$ let $r(X)=\lambda \operatorname{tr} X$ be the trace of X. Show how to solve the one-step update in part (b).

Question 10.2 (A variational principle): Ekeland's variational principle relates near optimality of points to being (nearly) stationary in ways that Question 10.3 explores.

Theorem 10.2.1 (Ekeland [2]). Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{\infty\}$ be proper (so that $\inf _{x} f(x)>-\infty$) and closed, and let x_{0} satisfy $f\left(x_{0}\right)-\inf _{x} f(x) \leq \epsilon$ for some $0 \leq \epsilon<\infty$. Then for any $\delta>0$ there exists a point \widehat{x} satisfying
i. $\left\|\widehat{x}-x_{0}\right\|_{2} \leq \frac{\epsilon}{\delta}$
ii. $f(\widehat{x}) \leq f\left(x_{0}\right)$
iii. \widehat{x} uniquely minimizes $f(x)+\delta\|x-\widehat{x}\|_{2}$ over $x \in \mathbb{R}^{n}$.
(a) Define the sublevel-like set

$$
S:=\left\{x \in \mathbb{R}^{n} \mid f(x)+\delta\left\|x-x_{0}\right\|_{2} \leq f\left(x_{0}\right)\right\} .
$$

Argue that S is non-empty and compact and hence a minimizer of $\widehat{x} \in S$ of f on S exists.
(b) Show that

$$
\left\|\widehat{x}-x_{0}\right\|_{2} \leq \frac{\epsilon}{\delta} \text { and } f(\widehat{x}) \leq f\left(x_{0}\right) .
$$

(c) Finalize the proof of the theorem to demonstrate that \widehat{x} as above satisfies its conclusions.
(d) Give an interpretation of Theorem 10.2.1. (There is no uniquely correct answer for this.)

For the final problem, we require a few new definitions. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is λ-weakly convex if for some $x_{0} \in \mathbb{R}^{n}$, the function

$$
f(x)+\frac{\lambda}{2}\left\|x-x_{0}\right\|_{2}^{2}
$$

is convex in x. (Convince yourself that the choice of x_{0} is immaterial here.) The Fréchet subdifferential $\partial^{\mathrm{F}} f(x)$ of such a function consists of those vectors g for which

$$
f(y) \geq f(x)+\langle g, y-x\rangle-O\left(\|y-x\|^{2}\right)
$$

as $y \rightarrow x$, which is equivalent in the λ-weakly convex case (this is not completely trivial) to the set of vectors

$$
\left.g \in \partial_{z}\left\{f(z)+\frac{\lambda}{2}\|z-x\|_{2}^{2}\right\}\right|_{z=x}
$$

that is, the regular subgradient of the convex function $z \mapsto f(z)+\frac{\lambda}{2}\|z-x\|_{2}^{2}$ evaluated at $z=x$. Note that in this case, if the function f in Ekeland's variational principle (Theorem 10.2.1) is weakly convex, then the final part becomes equivalent to the claim that

$$
0 \in \partial^{\mathbb{F}} f(\widehat{x})+\delta \mathbb{B}_{2}^{n} .
$$

Question $\mathbf{1 0 . 3}$ (Gradient mappings and weakly convex minimization):
(a) Give an example of a convex function $f: \mathbb{R} \rightarrow \mathbb{R}$ for which $\left|f^{\prime}(x)\right| \geq 1$ except when $x=$ $\operatorname{argmin}_{x} f(x)$, so that even in the convex case, we would not (generally) expect algorithms to find points with small subgradients.
(b) Let $f(x)=h(c(x))$, where h is convex and L_{h}-Lipschitz and c has L_{c}-Lipschitz derivative. Show that f is $L_{c} L_{h}$-weakly convex, and even more, that

$$
\partial^{\mathrm{F}} f(x) \supset \nabla c(x) \partial h(c(x)) .
$$

Hint. It is enough to show that $f+\frac{M}{2}\|\cdot\|_{2}^{2}$ is subdifferentiable.
(c) Recall that for a model f_{x} of f at the point x, we define the gradient mapping G_{α} via

$$
x_{\alpha}=\underset{x \in X}{\operatorname{argmin}}\left\{f_{x_{0}}(x)+\frac{1}{2 \alpha}\left\|x-x_{0}\right\|_{2}^{2}\right\} \quad \text { and } \quad \mathrm{G}_{\alpha}\left(x_{0}\right):=\frac{1}{\alpha}\left(x_{0}-x_{\alpha}\right) .
$$

Let f_{x} be convex and quadratically accurate, so that $\left|f_{x}(y)-f(y)\right| \leq \frac{M}{2}\|x-y\|_{2}^{2}$ for all y. Use Ekeland's variational principle (Theorem 10.2.1) show that for any x_{0} and $\alpha>0$, there exists \widehat{x} satisfying
i. Point proximity: $\left\|\widehat{x}-x_{\alpha}\right\|_{2} \leq \alpha\left\|\mathrm{G}_{\alpha}\left(x_{0}\right)\right\|_{2}$.
ii. Value proximity: $f(\widehat{x}) \leq f\left(x_{\alpha}\right)+\frac{M \alpha^{2}+\alpha}{2}\left\|\mathrm{G}_{\alpha}\left(x_{0}\right)\right\|_{2}^{2}$.
iii. Near stationarity: $\operatorname{dist}\left(0, \partial^{\mathrm{F}} f(\widehat{x})\right) \leq(2 M \alpha+1)\left\|\mathrm{G}_{\alpha}\left(x_{0}\right)\right\|_{2}$.

In short, once the gradient mapping $\mathrm{G}_{\alpha}\left(x_{0}\right)$ is small, there is a point \widehat{x} near the updated point x_{α} that is nearly stationary for f.
Hint. Following Drusvyatskiy and Lewis [1], define the function $\varphi(y):=f(y)+\frac{M+\alpha^{-1}}{2}\left\|y-x_{0}\right\|_{2}^{2}$. Argue that $\varphi\left(x_{\alpha}\right)-\varphi^{\star} \leq M\left\|x_{\alpha}-x_{0}\right\|_{2}^{2}$, where $\varphi^{\star}=\inf _{y} \varphi(y)$. Then apply Ekeland's variational principle with $\epsilon=M \alpha\left\|\mathrm{G}_{\alpha}\left(x_{0}\right)\right\|_{2}^{2}$, and observe that the \widehat{x} it guarantees satisfies $0 \in$ $\partial^{\mathrm{F}} \varphi(\widehat{x})+\delta \mathbb{B}_{2}^{n}$, where $\partial^{\mathrm{F}} \varphi(x)=\partial^{\mathrm{F}} f(x)+\frac{M+\alpha^{-1}}{2}\left(x-x_{0}\right)$.

References

[1] D. Drusvyatskiy and A. Lewis. Error bounds, quadratic growth, and linear convergence of proximal methods. Mathematics of Operations Research, 43(3):919-948, 2018.
[2] I. Ekeland. On the variational principle. Journal of Mathematical Analysis and Applications, 47(2):324-353, 1974.

