ee364m Exercise Set 3

Due date: January 31, 11:59pm
Question 3.1 (Inequalities with SDP Relaxations): Let $A \in \mathcal{S}_{n}=\left\{X \in \mathbb{R}^{n \times n} \mid X=X^{T}\right\}$ be a symmetric matrix and consider the quantities

$$
\begin{equation*}
f^{\star}(A):=\max _{x \in\{-1,1\}^{n}} x^{T} A x \text { and } f_{\star}(A):=\min _{x \in\{-1,1\}^{n}} x^{T} A x \tag{3.1}
\end{equation*}
$$

along with their semidefinite relaxations

$$
\begin{equation*}
s^{\star}(A):=\sup _{X \succeq 0}\{\operatorname{tr}(A X) \mid \operatorname{diag}(X)=\mathbf{1}\} \quad \text { and } s_{\star}(A):=\inf _{X \succeq 0}\{\operatorname{tr}(A X) \mid \operatorname{diag}(X)=\mathbf{1}\}, \tag{3.2}
\end{equation*}
$$

which satisfy $s_{\star}(A) \leq f_{\star}(A) \leq f^{\star}(A) \leq s^{\star}(A)$. Let $\operatorname{sign}(x)=1$ if $x \geq 0$ and $\operatorname{sign}(x)=-1$ otherwise, and for vectors $v \in \mathbb{R}^{n}$, define the elementwise sign mapping $\sigma(v)=\left(\operatorname{sign}\left(v_{1}\right), \ldots, \operatorname{sign}\left(v_{n}\right)\right)$.
(a) Show that

$$
f^{\star}(A)=\sup _{V \in \mathbb{R}^{n \times n}, u \in \mathbb{R}^{n}}\left\{\sigma\left(V^{T} u\right)^{T} A \sigma\left(V^{T} u\right) \mid \operatorname{diag}\left(V^{T} V\right)=\mathbf{1},\|u\|_{2}=1\right\} .
$$

(An analogous result of course holds for f_{\star}.)
(b) Let $u \sim \operatorname{Uni}\left(\mathbb{S}^{n-1}\right)$ have uniform distribution on the sphere. Show that

$$
f^{\star}(A)=\sup _{V \in \mathbb{R}^{n \times n}}\left\{\mathbb{E}\left[\sigma\left(V^{T} u\right)^{T} A \sigma\left(V^{T} u\right)\right] \mid \operatorname{diag}\left(V^{T} V\right)=\mathbf{1}\right\} .
$$

Hint. What happens when V is rank 1?
For the remainder of the problem, for a function $h: \mathbb{R} \rightarrow \mathbb{R}$ and matrix $X \in \mathbb{R}^{n \times n}$, let $h[X] \in \mathbb{R}^{n \times n}$ be the entrywise application of h to X, that is, the matrix whose (i, j) entry is $h\left(X_{i j}\right)$.
(c) Show that

$$
f^{\star}(A)=\frac{2}{\pi} \sup _{X \succeq 0, \operatorname{diag}(X)=1} \operatorname{tr}\left(A \sin ^{-1}[X]\right) .
$$

(d) Use that $\sin ^{-1}[X] \succeq X$ whenever $\left|X_{i j}\right| \leq 1$ for all entries i, j of X to show that for any diagonal matrix $D=\operatorname{diag}(d), d \in \mathbb{R}^{n}$, with $A+D \succeq 0$, we have

$$
f^{\star}(A) \geq \frac{2}{\pi} \sup _{X \succeq 0, \operatorname{diag}(X)=1} \operatorname{tr}(A X)-\left(1-\frac{2}{\pi}\right) \mathbf{1}^{T} d
$$

(See Question 3.2 below for the easy(ish) proof of the arcsin inequality.)
(e) Here we preview what is to come a bit in the class. Using the duality theory we develop, we may show that

$$
s_{\star}(A)=\inf _{X \succeq 0}\{\operatorname{tr}(A X) \mid \operatorname{diag}(X)=\mathbf{1}\}=\sup _{d \in \mathbb{R}^{n}}\left\{-d^{T} \mathbf{1} \mid A+\operatorname{diag}(d) \succeq 0\right\} .
$$

Conclude that we have the approximation bounds

$$
s^{\star}(A) \geq f^{\star}(A) \geq \frac{2}{\pi} s^{\star}(A)+\left(1-\frac{2}{\pi}\right) s_{\star}(A) .
$$

An additional quite optional question (for flavor)

Question 3.2 (Spectra of Kronecker and Hadamard products): The Kronecker product $C=A \otimes B$ of matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{p \times q}$ is the matrix $C \in \mathbb{R}^{p m \times q n}$ with block entries

$$
C=\left[\begin{array}{cccc}
A_{11} B & A_{12} B & \cdots & A_{1 n} B \\
A_{21} B & A_{22} B & \cdots & A_{2 n} B \\
\vdots & \vdots & \ddots & \vdots \\
A_{m 1} B & A_{m 2} B & \cdots & A_{m n} B
\end{array}\right]
$$

(a) Let $A \in \mathcal{S}_{m}$ and $B \in \mathcal{S}_{n}$. Give the eigenvalues and eigenvectors of $A \otimes B$ in terms of those of A and B.
(b) Using part (a), show that the Hadamard (elementwise) product of positive semidefinite matrices is positive semidefinite, that is, if $A, B \succeq 0$, then $A \odot B \succeq 0$.

For the remainder of the problem, for a function $h: \mathbb{R} \rightarrow \mathbb{R}$ and matrix $X \in \mathbb{R}^{n \times n}$, let $h[X] \in \mathbb{R}^{n \times n}$ be the entrywise application of h to X, that is, the matrix whose (i, j) entry is $h\left(X_{i j}\right)$.
(c) Let $X \succeq 0$. Show that $[X]^{k} \succeq 0$ for all $k \in \mathbb{N}$.
(d) Let $X \succeq 0$. Show that if $\left|X_{i j}\right| \leq 1$ for all i, j, then $\sin ^{-1}[X] \succeq X$. Hint. Use the (infinite) Taylor expansion of $\sin ^{-1}$, which has all positive coefficients.

