EE364M EXERCISE SET 4

Due date: February 7, 11:59pm

Question 4.1 (Strong duality with conic inequalities): Let \mathcal{H} be a Hilbert space (complete normed vector space with inner product $\langle \cdot, \cdot \rangle$) and $K \subset \mathcal{H}$ be a convex cone¹ with non-empty interior. We say

 $x \succeq 0$ if $x \in K$ and $x \succ 0$ if $x \in \text{int } K$.

The dual cone associated with K is then

$$K^* := \{ v \mid \langle v, x \rangle \ge 0 \text{ for all } x \in K \}.$$

Let \mathcal{X} also be a Hilbert space. A mapping $G: \mathcal{X} \to \mathcal{H}$ is K-convex if its domain is convex and

$$G(tx + (1-t)y) \leq tG(x) + (1-t)G(y)$$
 for all $t \in [0,1], x, y \in \text{dom } G$.

Let $H: \mathcal{X} \to \mathbb{R}^k$ be an affine function. Consider the convex problem

minimize
$$f(x)$$

subject to $G(x) \leq 0, \ H(x) = 0, \ x \in \Omega$ (4.1)

where $\Omega \subset \mathcal{X}$ is convex and both $\Omega \subset \text{dom } f$ and $\Omega \subset \text{dom } G$, with optimal value ω^* . Assume the following constraint qualification: there exists $x_0 \in \Omega$ such that

$$G(x_0) \prec 0 \text{ and } H(x_0) = 0,$$
 (SLATER)

and additionally that $0 \in \inf\{y \in \mathbb{R}^k \mid H(x) = y \text{ for some } x \in \Omega\}.$

Show that strong duality obtains for problem (4.1), that is, there exist

$$\lambda^{\star} \in K^{\star}$$
 and $\nu^{\star} \in \mathbb{R}^{k}$ such that $\inf_{x \in \Omega} \{f(x) + \langle \lambda^{\star}, G(x) \rangle + \langle \nu^{\star}, H(x) \rangle \} = \omega^{\star}.$

Hints. You may use the following form of the separating hyperplane theorem.

Proposition 4.1.1 (Eidelheit Separation). Let A, B be convex sets in a Hilbert space \mathcal{X} such that A has non-empty interior and int $A \cap B = \emptyset$. Then there exists $\lambda \in \mathcal{X}, \lambda \neq 0$, such that

$$\inf_{a \in A} \langle \lambda, a \rangle \geq \sup_{b \in B} \langle \lambda, b \rangle.$$

It will be useful to prove that $A := \{(u, y, t) \mid f(x) \leq t, G(x) \leq u, H(x) = y \text{ for some } x \in \Omega\}$ has non-empty interior. This is not a completely trivial statement. You should feel free to assume that the Hilbert spaces are finite-dimensional (i.e., \mathbb{R}^n). I have two solutions; each uses one of the Lemmas 4.1.2 or 4.1.3, both of which follow by combining Proposition 4.1.1 with the following openness guarantee for convex sets.

Lemma 4.1.1 (Hiriart-Urruty and Lemaréchal [1], Lemma III.2.1.6). Let C be a convex set in a vector space with norm $\|\cdot\|$. If $x \in \text{int } C$ and $y \in \text{cl } C$, then the half-open segment $[x, y) := \{(1-t)x + ty \mid 0 \le t < 1\} \subset \text{int } C$.

¹For this question, we say that K is a cone if for any $x \in K$, $tx \in K$ for t > 0. We do not require that $0 \in K$.

The book provides the result for $C \subset \mathbb{R}^n$, but the proof extends to any vector space.

If you use one of the following results, you should prove it.

Lemma 4.1.2. Let K be a convex cone in a Hilbert space \mathcal{H} with non-empty interior. Then the following hold.

- i. Let $u \in \text{int } K$. For $\lambda \in K^*$, $\langle \lambda, u \rangle = 0$ if and only if $\lambda = 0$. In particular, any vector $\lambda \in K^* \cap -K^*$ is zero.
- ii. int K is a convex cone.
- iii. For any two vectors $x_0, x_1 \in \mathcal{H}$, $(x_0 + \operatorname{int} K) \cap (x_1 + \operatorname{int} K)$ is non-empty.

Lemma 4.1.3. Let K be a convex cone in a Hilbert space \mathcal{H} . Then the following hold.

- i. Let $u \in \text{int } K$. Then for $\lambda \in K^*$, $\langle \lambda, u \rangle = 0$ if and only if $\lambda = 0$.
- ii. cl $K = K^{**}$, and so if K is closed, then $K = K^{**}$.
- iii. Define $\gamma_{\min}(u) := \inf_{\lambda \in K^*} \{ \langle \lambda, u \rangle \mid ||\lambda|| = 1 \}$. Then $\gamma_{\min}(u) \ge 0$ if and only if $u \in \operatorname{cl} K$. If $\inf K \neq \emptyset$, then $\gamma_{\min}(u) > 0$ if and only if $u \succ 0$.

References

 J. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms I. Springer, New York, 1993.