ee364m Exercise Set 7

Due date: February 28, 11:59pm
Question 7.1 (An efficient representation of robustness): In robust optimization problems, one has uncertain problem data: abstractly, there is an uncertainty set \mathcal{U} capturing potential noise, and we wish to guarantee that problem constraints are satisfied for all potential values $u \in \mathcal{U}$. This (abstractly) gives rise to convex optimization problems of the form

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x, u) \leq 0 \text { for all } u \in \mathcal{U}, \quad i=1, \ldots, m \tag{7.1}
\end{array}
$$

where for each $u \in \mathcal{U}, g_{i}(\cdot, u)$ is convex. See, for example, the book [1] for much much more on such problems. The challenge is that, while the problem (7.1) is convex whenever f is, the constraints in problem (7.1) are typically infinite, making efficient computation challenging; a common approach is to use duality to obtain an alternative representation of the constraint $g_{i}(x, u) \leq 0$ for all $u \in \mathcal{U}$ that is efficiently representable. Typical choices for \mathcal{U} include sets defined by probability distributions, so that \mathcal{U} covers (say) a $1-\alpha$ fraction of possible realizations of noise u in a system.

Recall the ℓ_{2}-operator norm $\|A\|_{\text {op }}=\sup \left\{u^{T} A v \mid\|u\|_{2}=\|v\|_{2}=1\right\}$. Fix (nominal) problem data A_{0}, b, let $\gamma \geq 0$, and consider the constraint that $(x, t) \in \mathbb{R}^{n} \times \mathbb{R}_{+}$satisfy

$$
\begin{equation*}
\left\|\left(A_{0}+\Delta\right) x+b\right\|_{2} \leq t \text { for all }\|\Delta\|_{\text {op }} \leq \gamma \tag{7.2}
\end{equation*}
$$

Show that (x, t) satisfy the constraint (7.2) if and only if there exists $\lambda \geq 0$ such that

$$
\left[\begin{array}{ccc}
t I_{n}-\lambda I_{n} & 0 & \left(A_{0} x+b\right) \\
0 & \lambda I_{n} & \gamma x \\
\left(A_{0} x+b\right)^{T} & \gamma x^{T} & t
\end{array}\right] \succeq 0
$$

Hints. In my solution, I used the following results. If you use Lemma 7.1.1, you should prove it. You may assume Lemmas 7.1.2 and 7.1.3.

Lemma 7.1.1. Let $K=\left\{(x, t) \mid\|x\|_{2} \leq t\right\}$ be the Lorentz cone. Then $(x, t) \in K$ if and only if

$$
\left[\begin{array}{cc}
t I & x \\
x^{T} & t
\end{array}\right] \succeq 0 .
$$

Lemma 7.1.2 (Schur complements). Let A, B, C be matrices of appropriate size. Then

$$
M=\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right] \succeq 0
$$

if and only if $A \succeq 0, C-B^{T} A^{\dagger} B \succeq 0$, and $\operatorname{span}(A)$ contains the columns of B.
Using these, I showed that the constraint (7.2) was equivalent to

$$
\begin{equation*}
t\|v\|_{2}^{2}+t s^{2}+2 s v^{T}\left(A_{0} x+b\right)-2 \gamma s u^{T} x \geq 0 \text { whenever }\|v\|_{2}^{2} \geq\|u\|_{2}^{2}, s \in \mathbb{R} \tag{7.3}
\end{equation*}
$$

Now apply

Lemma 7.1.3 (Inhomogeneous S-Lemma). Assume the constraint qualification that there exists \bar{x} such that $\bar{x}^{T} A_{0} \bar{x}+2 b_{0}^{T} \bar{x}+c_{0}>0$. Then the following two statements are equivalent:

$$
x^{T} A_{0} x+2 b_{0}^{T} x+c_{0} \geq 0 \quad \text { implies } \quad x^{T} A_{1} x+2 b_{1}^{T} x+c_{1} \geq 0
$$

and

$$
\left[\begin{array}{cc}
A_{1}-\lambda A_{0} & b_{1}-\lambda b_{0} \\
\left(b_{1}-\lambda b_{0}\right)^{T} & c_{1}-\lambda c_{0}
\end{array}\right] \succeq 0 \quad \text { for some } \lambda \geq 0 .
$$

References

[1] A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski. Robust Optimization. Princeton University Press, 2009.

